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ABSTRACT

)In this paper the basic semiconductor device equations modelling a Co .

symmetric one-dimensional voltage-controlled diode are formulated as a

singularly perturbed two point boundary value problem. The perturbation

parameter is the normed Debye-length of the device. -N& derive the zeroth and

first order terms of the matched asymptotic expansion of the solutions, which

are the sums of uniformly smooth outer terms (reduced solutions) and the

exponentially varying inner terms (layer solutions). The main result of the

paper is that, if the perturbation parameter is sufficiently small then there

exists a solution of the semiconductor device problem which is approximated

uniformly by the zeroth order term of the expansion, even for large applied

voltages. This result shows the validity of the asymptotic expansions of the

solutions of the semiconductor de-.'ce problem in physically relevant high-

injection conditions. ( .
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SIGNIFICANCE AND EXPLANATION

it is well-known that potential distribution and current flow in a

pn-junction diode are described by the solution of a system of ordinary

differential equations subject to certain boundary conditions. We scale the

system appropriately and obtain a singular perturbation problem, i.e. certain

derivatives of the dependent variables are multiplied by a small parameter

which is identified as the normed Debye-length of the device.

The singular perturbation character of the problem introduces two

different scales of variation of solutions, namely a fast one on which the

solutions vary close to the pn-junction and a slow one away from the junction.

We derive separate representations of the solutions which hold inside and

outside the pn-layer respectively, and we obtain asymptotic expansions of

solutions by matching these local representations.

* The main result of this paper is that the asymptotic expansion

'represents' a solution of the semiconductor problem for small ), i.e. there

is a solution which is approximated well by the derived (finite) asymptotic

expansions, provided the singular perturbation parameter is small. We present

an estimate for the approximation error depending on the applied voltage and

show that the singular perturbation approach 'covers' physically relevant bias

*; ranges for modern, highly doped devices.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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ASYMPTOTIC RPRESENTATION 0F SOLUTIONS OF
THE BASIC SEM4ICONDUCTOR DEVICE EQUATIONS

Peter A. Markawich* and Christian Schmaiser*

1.* INTRDUCTION

This paper is concerned with the asymptotic representation of solutions of the basic 'h*

semiconductor device equations f or the case of a simple model device, namely the symmetric

* one-dimensional diode.0

The physical situation we encounter is as follows. A semiconductor (e.g. silicon) is

doped with acceptor ions in the left side (p-side) and with donor ions in the right side

(n-side) and a bias V VA Vc is applied to the Ohmic contacts (see Figure 1).

applied potential VA aplid potential VC

Figure 1: Diode

For simplicity we make the following symmetry assumptions:

(i) The pn-junction (that Is the boundary between the n and the p-region) is in the

middle of the device.

(ii) The concentration of acceptor atom in the p-side and the concentration of donor

atoms in the n-side are constant and equal (to C > 0, C is called doping concentration).

(iii) The applied potentials VCVA satisfy: VC -VA.

Under these assumptions, the performance of the device is described by the following two-

point boundary value problem

*Technische Universitlt Wien, Institut flir Angevandte Hathematik, Wiedner Hauptstr. 6-10,
A-1040 Wien, Austria, Europe

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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(1.1b) n= n#1 + 2

0 4 x 4 1

(1 ,1c ) J - - ' - "

(1.1d) J' - .

subject to

(1.1.) ,(0) - 0, *(1) - *x(6) ( !, (8) I "nO 1 -

(1+ 2 22

(1.1f) n(O) = p(O), n(1) - + + 464)

(1.11) +_1 I + T 64)

where the dependent variables have the following physical meaning

*t (scaled) electrostatic potential

n: (scaled) electron concentration

p: (scaled) hole concentration

J: (scaled) total current density.

The x-interval [0,11 on which the problem is posed represents the n-side of the device

=; (after scaling), U - (where UT * Volt is the thermal voltage) represents theUT ..

voltage parameter, B is that potential at x = 1 which prevails if zero external bias
Bi

i is applied (built-in-potential, originating from the doping) and X,6 > 0.

The problem (1.1) is derived by adapting the basic semiconductor device equations (as

given by Van Aoosbroeck (1950)) to our specific device using the symetry assumptions (i),

(ii), (iii) and other simplifying assumptions (like constant electron and hole mobilities

and neglect of generation-recombination of carriers) and by appropriate scaling (the length

of the device is scaled to 2, the doping concentration to 1). Details on the assumptions

. and on the scaling are given in Markowich and Ringhofer (1984) and Markowich (1983),

. ( 1984 ).

-2-
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The parameters A and 6 are introduced by the scaling. Physically A is the

normed Debye length of the device, that means

-2q1
:,.

where £ is the material permittivity constant, q the elementary charge and 2A the

(original) length of the device.

626 is the scaled intrinsic number of the device

2
(1.2b) C n:

(ni is the number of free electrons of the semiconductor per unit volume, ni 1010/cm
3

for silicon).

rJT q and ni are material constants while the length L and the doping

concentration C specify the device.

For a realistic silicon diode, we have C 10 1 7 /c= 3  and I- 10-2 c.. This yields

X2 < 0-7.Thus the problem (1.*1) can be regarded as singularly perturbed two-point

boundary value problem with perturbation parameter X and the standard method of matched

asymptotic expansion can be employed. It turns out that a boundary layer (i.e. a small

region of fast variation) occurs In *,n, p at the Junction x =0. No layer occurs at

the Ohmic contact x = 1, those solutions which are approximated by the asymptotic

expansion are uniformly (in A) smooth away from x - 0.

Also 6 is small (practically 82 < 10-7). We will, however, see later an that the

* .*smallness of 6 has a weaker impact on the solution structure than the smallness of A

(62 is not a singular perturbation parameter since it does not multiply a derivative of a

dependent variable).

In the recent past, many papers dealt with the singular perturbation analysis of the

basic semiconductor device equations (e.g. Vasileva and Butuzov (1978), Vasileva and

Stelmakh (1977), Markowich and Ringhofer (1984), markowich (1984)). The authors of these

papers concentrate on deriving the zeroth order terms of the asymptotic expansions of the

,'4o
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solutions of the semiconductor device equations as X 0+ (even in the high dimensional

case and for devices much more complicated than our symmetric diode). However, the

question of the validity of these asymptotic expansions is a rather unsettled issue. It

was proven by Markovich (1984) that for zero applied bias (U - 0) there is a solution of.*, %1*

the semiconductor device problem which is close to the zeroth order term of the expansion

if A is small (even in the multidimensional case). For the one-dimensional case this 0

result was carried over to small applied bias (juI < c where c tends to zero rapidly as

A * 0+, 6 + 0+1 see Markovich. Ringhofer, Selberherr and Langer (1982)). However, this

is of extremely limited practical applicability, since it only means that for sufficiently

high doping or for a sufficiently large device (large C or large I implies small A) --

and for biasing conditions sufficiently close to thermal equilibrium (represented by

U = 0) the solutions are asymptotically represented by the asymptotic expansions. In

practice, however, one is interested in the performance of highly doped devices when high

voltages are applied.

In this paper we show - at least for our simple model device - that there is a

solution of (1.1) which is approximated by the zeroth order terms of the asymptotic

expansion if A is sufficiently small and if U is in some specified voltage range which

gets larger as A * 0+ and which includes physically relevant high-injection biasing

conditions. This result in some sense justifies the singular perturbation approach for the

semiconductor device equations.

The paper is organized as follows. Section 2 contains the derivation of the zeroth

and first order terms of the asymptotic expansions, the main result of the paper and the

functional analytic framework employed for its proof are given in Section 3. The highly

technical details of the proof are collected in the Appendices A and S.

4 . "';. ."
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2.* DU~IV&ZION OF ASYMPTOTIC 3XPANSIONS

We will now apply the approach of matched asymptotic expansions to the problem

* (1~.1). Therefore vs assume that the solution (4i,n,pJ) has an asymptotic expansion in .-

powers of A where each coefficient is the sun of a term which is independent of A and

of boundary layer terms. it was shown by Markovich and Ringhofer (1984) that the terms

representing the layer at x - I (at the Ohmic contact) Vanish in zeroth and first

order. Thus we expect a layer only to occur at the junction x - 0 and make the ansatz:

*(x,,) ; (x) + N(T) + Ail1 x I4 *1 r

n(x.x) ; (X) + 41r) + A; (x) + A; (T) +
(2.1)aUp(XA);(X) + P(-[) + ).PI(X) + Xp 1 (r) +

where the dots denote terms of order at least A 2 . Note that the current density J is

indespendent of x because of (1.1d). T - is the fast independent variable. The terms

marked with 1-1 are independent of A and the terms marked with '^' are zeroth and

first order layer terms which are required to decay to zero as the fast independent

variable tends to infinitys

(2.2) (- - n(- n a 0

By inserting (2.1) into (1.1) and by equating coefficients of equal powers of A we will

obtain boundary value problems for the terms in (2.1).

Construction of zeroth order terms,

By comparing coefficients of A0  and evaluating away from x =0 we obtain the

reduced equations

0- ~ n 1I

or equivalently

W. % .6

% . . . .. .. . .
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(2.3) 1
2p + I

2 (2i + 1I

For the zeroth order boundary layer terms we get (by comparing coefficients of X* 0 close

pto x 0

(2.4) n G (O) + 00~

p =-(p(O) + p)4'

where the dot denotes differentiation with respect to T. Equating zeroth order terms in

* the boundary conditions (1.1e) -(1.1g) gives

i(0 + *1(0) - 0, ;(0) + n(0) - ;CO) + ;CO)

* (2.5)

fm %Z- n(1) - + 1, i(1) = p1

By conditions (2.2), ;i, n, phave to be trajectories on the stable manifold of (2.4)

which is represented by

n =n(0)(e4 - 1)

(2.6) p -p(0)(;* 1

* (see Schuejeer and Weiss (1984)).

Using (2.6) we obtain the reduced boundary conditions from (2.5)

*(0) - *(O) - B ~)=p
* (2.7) n(0)e- M (e ; 4(I) = P- I

*Equations (2.3) can be integrated and the solution of (2.3), (2.7) (reduced solution) can

be written as -

-6-



2( b 64)

1(-b 1)t a.2,
b - I

(2.8) " "'
- + I ,"..,:."-

'I - 2p + Cn - 2 ,

where the parameter b > 1 is related to U by

(2.9) 2 B" + 2p, -- n I b -n : F(b)

Obviously

lrn F(b) lir F(b) F'(b) 2 1 0. b e (1,-)
b+l b- (b- 1)

holds. Thus, (2.9) is a one-to-one relation between U e (.m =) and b e (1.-).

From (2.8) and (2.9) we get a first order (formal) asymptotic approximation of the

Aitage-current-characteristic: 0

(2.10) +1/464 1 + -/ ++ 4 + /I + 2

(2.10) n 2 In +_2_

26 /464 + 23

We compute n(O), p(O) in terms of b by using (2.8) and rewrite (2.6) as

(2.11a) n (e -1)

(2.11b) P - (e -1)

b 4 I b -+ I

"" (2.1Ic) - _ +- e -

(2.1,d) f(o) = 10(0) - -in vi.

(2.11c) is obtained by observing that sgn C(0) =-1 (since sqn ;(0) =1 and

~"(O) +
(0) + O() 0). The unique solvability of (2.11c,d) and the exponential decay of 4, n

and p follow from an application of the theory of Fife (1974) to the second order

equation in (2.4) (see Markowich, Ringhofer, Selberherr and Langer (1982)).

-7- . -.
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Construction of first order coefticients:

Generally n-th order coefficients of matched asymptotic expansions are defined by

problems which are linearized versions of the problem defining the zeroth order a.

coefficients with inhoflogeneities only depending on coefficients of order at most

(n -1) (see Schmeiser end Weiss (1984)). The first order coefficients satisfy

(2.12) 11= 25+

2p + 1 (2p + 1)

2(p+ 1) (2j + 1

for the part which is independent of A end

40 n1 I P1

(2.3)n, l + in1 + 4*p1(O) + n#j'(O) + *Tp'(O)
b-

PI b-l 1~ -1 -p *jp(O) -p*1(O) -*TpI(O)

for the layer terms. The boundary conditions

;()+ ;1(0) =0, ; 1 (0) 4+ n1(0) ; 1(O) + ;,(O)

(2.14)
*1(1 0, n (1) =0, P1 1 0

hold. The results of Appendix AWs imply that decaying solutions of (2.13) can be written

in the form

W4

a,%



.1 .--.. -..... -. -.. +. - (0) (a 1

p0

-- *1 p i

n~ ~ ~ ft -P O -1(.() + n*s)

(2.16) bp -P(O 1 2~)+s()

*p~ ~ -2 (a e% + - (O)(e U e-1) + p (u , U)dd

p

(2.16)tio p f (62 si(,4) an (2.15(p~ ) + givs epeson o hdrdcdsouino

2& (n (2) p a0

25 (b - a)

Th( osan2.1.5)i7)p(0 0). Teepesin 215,(.7

2(2p + ).

(b 1)a

can be simplified using the following

-. a aJ(b -1)a

Lemma_2.1_ n P(0) - p (0) - - - *0

2Vb
Proof: Relations (2.3) and (2.8) imply

pU()--J(b -1)
p'0 (b 4- 1)

Thus, we get

-9-
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n (0) __I(b -1)
p 2'(b+1) 0 (2.(8) 8*s($))dsa

J(b - 1) e-'PC) 2b l')- )a+i.' -*r 
A.

2/i (b + 1) 0 b - 1 e(eds
T~0

BY partial integration in the second integral we obtain

= J(b - 1)n -2b Jp(s)da + i (-Toe + 1) do)e] )e~p 2/b (b + 1) 0 0-f
0

* Jb 1) [-2b f p(a)ds + (b -1) 1p(.)d.] - -2A..z.2 j
*.2/b (b + 1) 0 0 2/b 0

Similarly we show

- (b-

2/'b 0

Hence, from (2.4) we obtain

j(kb a)Jb 1n (0) -p (0) =J(n(s) -p(s))ds 0 _ *0)
2/b 0 2/~b

qW .70

% %% %



3. THt FZPRBSZNTATION T IOR-:

The question to be answered now is whether and how well do the zeroth order terms of

the asy ptotic expansions (2.1) approximate a solution (#, n, p, J) of the problem (1.1).

':The following theorem is derived by a straight forward application of the e ,

representation theory for singularly perturbed two-point-boundary value problems given in

Schmeiser and Weiss (1984).

Theorem 3.1: For every U e R and 6> 0 there is X - A0 (U,6) > 0 such that for

A X (U,6) there is a locally unique solution 1j, n, p, J) of 1.1) which satisfies

(XA) ; (x) + + 0(A)

n(x,A) - n(x) + n(x ) + O(M)

p(xA) P(X) + p() + 0

o+ °,

uniformly for x e (0,11.

Also the existence of asymptotic approximations of arbitrary order of accuracy can be

concluded from Schmaiser and Weiss (1984).

The theorem says that, for given doping concentration C (which determines 6 by

(1.2b)) and for a given voltage U there is to > 0 such that for all diodes with length

22 > 210 the corresponding semiconductor device equations (1.1) have solutions which are

uniformly approximated (to order A) by the zeroth order terms of the asymptotic expansion

1.1) (note that 9 and C determine A by 1.2a) for a given material and that A * 0

for I " when C is constant).

Practically, this is a rather meaningless result since one is not interested in b
applying a fixed voltage to various (sufficiently large) devices, but in varying the

voltage applied to a fixed highly doped device (that means A and 6 are small and fixed

and U varies over a certain voltage range).

% -%oo
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T~o prove an approximation result which is unitform in a sufficiently large U interval

we basically proceed as Schusiser and Weiss (1984) did for general singularly perturbed

two-point boundary value problem but we always keep track on how small A has to be (in

dependence of 6 and the parameter bs which is related to U by (2.9)) in order to

guarantee the validity of the results in Schniser and Weiss (1984). V

We regard the problem (1.1) (after eliminating (1.1d), putting all terms on the left

hand side and expressing U as function of bs, 6 by using (2.9)) as operator equation

(3.1a) P ~(*,n,pJ) -(A 2 * (n-P-1),nl- n*' - pl+ P*+ *(0)AM1 +UbX.6, 2#, 2BI 2

n(0) -p(0),W() - .(I + +/
T 

),p1) - ~(-I + + 6 =j 0

The following spaces will be needed in the sequels

(3.2a) B W2',1,) x(C[O,,] n WI, 1(0,1)) 2 xR

*1 2 x5R
(3.2b) e2A (0,1) x (L (0,1))xa

equipped with the norms 1-1 ' 1-12, reap. defined by

(3.3a) 1*,n,p,j)l : 91+ l#l + A2l"
L 01) L (0,1) L (0,1)

+II + Xln'l + 1P' + Xjp' 1  +I~

for (*,n,p,J) e B1, and

(3.3b) I (u.V, w, a) I 2,A : ul + lVI 1 + 1w1I 1 -1
L (0,1) L (0,1) L (0,1)

for (u,v,w,*) e

UP'P(0,1) denotes the Sobolev space of real valued functions defined on (0,1) whose

weak derivatives of order up to m are p-integrable for 1 4 p < - and essentially

* bounded for p - (see Adams (1975))l i.e. f e tP'P(O,1) if f(i) e LP(0,1) forS

0 4 i 4 m. We denoted

-12-
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(3.4) If, go U f(x)Ip4x)1", 1 49 p < -s 1 - a su
IN. a1) 0 L (0,1) xe (0, 1

ad I max Jai fo a-n As the idcdmatrix nois

."-. .'

denated by I-

From Sobolov's imbedding theorem (see, Adagms (1975)) we conclude that f e W1 "(011)

implies f e C5 (0,t) (f is continuous and bounded in (001)) and that EIn-
L (0,0)

cont (Ife + Ifli holds for all f e W1'1 0,I). Therefore the functional
L (0,I) L (0,1)

it * 4.AWfN defines a norm (for X 0) on CO.11 n~ Wu (0,I) under
L (0,1) L. (0.1)

which this space is a Banach space.

We denote the asymptotic expansion (2.1) (up to the first order term) by

(354 *(x,X) + x)4 + A()+

43.b) n (x) ;(X) + +one ;1 )) + A;,(

(3.5c) p a(X)X) i (x) + ;(f) + ).41 wx +

(3.5d) (1) - +

The terms on the right hand side of (3.51 were computed (up to *which sol.es (2.11,,d))

oin Section 2. Clearly *a- no Re and J depend on 0 and on the parameter b,

For the representation proof we proceed as follows, (A) We compute the residual at

- . a a -

(3.6) r(,6.b) FA 6,b(* a+ 'n -aj.A)

and estimate Ir(A,6,b)I2  4 R(A,6,b).

(o) We compute the Frecht derivative of F b at

((*n,pj.) ,8,b(*ana Paja) 'SP lk *-.

and estimate its inverse ( '. K X,6,b).

-.. ... ...

I) 4B) We col~~ute the *'chet deiateo F,6,b ap at(aa,,a)

e-... - ... . . . .

"...". . ., .. A . . . . .. A.

.- .. -. .**.* . .. . . . .. .-......... .:.**2.**-*.*
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(C) We estimate the Lipschitz conStant Of D., L( 33) in a

sufficiently Large sphere about (auflauPaJa h

(3.8) D Fab*npJ)D,., jFAXb(*a*n 'Pa 7 a )IB

-. 
... ..n n

for -'n 5 p-a'- a1,

The bounds R,1 1  and K2  are explicitly determined in the following

*Lama 3.1. There are constants %00
6
00CC1DC2*C3*0 0 such that the estimates

(3.9) R(A,6ob) (C A 2  + & j6 (An b
1 (b -. ).

S(3.10 ) K t 2 h,6 ,b) t n

hold independently of the radius afor 0 < X 4 ),Of 0 < 6 0. If, additionally

(3.11) ADn F n , ) - + 6% b )ln a/ a

(b - 1) 16

then

2Lj

(3.12) K(AL,6,b) 9(C2  1 +~ (in V-
1 21 (b-1)

*holds, too.

*Prooft The estimate (3.9) is proven in Appendix B, (3.1); (3.12) in Appendix A, Lemon A.4

(which uses (3.11)) and (3.10) follows immediately by linearizing 1A,d,b at

*o (- a9 , n - pa J - _,)p , ._J -) 
.-

We will employ the following version of the implicit function theorem (see Chow and

Hale (1982))s

Lemma 3.2. Let F be a Lipschitz-continuously rch t differentiable map from the Banach

*space B, into the Sanach space 32' Asumer that the equation F(x) - r has a solution

*xa which is isolated, i.e. the Frechet derivative DTF(x)al 91 82 is boundedly

invertible. Let the constants K, and K2 satisfy

(-14

S..*.. .**•..,.4..

1.. . . . . .... .-
o,-o

4.. ...............
..ho ds to .~. ~ : . : . . ' . . ~4. % 4 ~ 4 7 4, 4 ~ * % . " -" -

%, %4. -... ., - oO -
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x2 1

ID 1(x) - 0F(xa)Ig *8C K21X -aS ifl Ix -xl 4 P for some p > 0

Then the problem F(x) -0 has a solution x which satisf ies

'S.,:.

1% Xl 4C 21K Irl 51 2

if

I2K 1K

holds. The solution x is unique in the sphere with radius and center x 5 .
1 2

Ci)( , )'' - +
The ~ ~i mai reul of th pae is the follwing

Theo . The reoalrt io nstans C4'#p,) Datsie t e stimcth hte t. .o-01h"(3.16) I- +*l 4In• - (nB • nll l 2p---(p"+ p "

loalLnqeslto (0.1p~) Lo (0X L 1(0,1)eihe

2 + + - ...

a j DA82 )6(*131 + 1 )9/ 2  in the cas (

2-2

holds. The solutalaion nihe tisfes (sheow ethati (ii imply (3.11,

.Theo~,e the estimtes (9 ( d 12 o the ip c it&

funcion .There (L. 3.2l)xt be applied + conclude the ca e obility ofi)

ra* F (*,nIp.j) - 0. it follows that there is a locally unique solution (*,n p,3) if

R(A,6,b) 4 2 This is guaranteed by (3.11), too. The inequality (3.16)

2KI(A,6,b)K2(A,6,b)

is obtined by estimating the first ordes term of the expansion (2.1) (see Appendix A,

Zb

v xsZ~,.x .5).-./

. - +in the ase.(I.

-ro_ : &s l c-cuato-wic Se (2.) hos ha ( 0 -n (i)ip. 1).1-"

"..'". . , ,b(. ,n * ,* ) - O *~ . folwsta .hee.I •.ocll unqu soltio (,,n * ,Jf......

. ... -- S. . **.-*** * ** .* * *.*

-. . .. - .. - . . - .

- .. v"... 2 -P '...:', .-**-2 *.- . '.
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lamms A.d. 10, A.d. 20) and by observing that the error bound given by (3.14) (which

includes the first order terms) is sharper than (3•16). p
We now consider a realistic silicon diode with the numerical values of the parameters

given in Section 1. he cases a) and b) in the forualation of Theorem 3.1 yield

approximate upper and lower bound* for the applied voltage V - UTU. With

C+ - C_ - 0() we obtain

(3.17) -0,2 Volt < V < 0,8 Volt

The upper bound represents a large forward bias for the considered device. Thus our theory

covers a realistically large forward bias range.

In the reverse bias case application of up to -10 Volt is of practical interest.

Apparently the reverse bias range covered by the presented theory is much smaller than

- desired. We conjecture that this is caused by the fact that the space charge region

* wideness with increasing reverse bias. This limits the validity of an ansetz which

strongly uses the "boundary layer behavioro of the solution.

Figure 3•1 shows the reduced potential , Figure 3.2 the reduced hole concentration

p and Figure 3.3 the reduced current density J as given by (2.8). The surfaces were

obtained by parametrizing the curves ' n on the x-interval [0.11 (n-side of the

UU
device) with the scaled applied voltage 3 ranging from 2 (-0.5 volt reverse bias)

-2

to - 40 (2 volts forward bias). The reduced electron concentration n is not depicted .
* 2

since it is given by shifting p by the value 1, i.e. n - p + 1. The extension of the

reduced solutions to the interval [-1, 1] is obtained by using the symmetry conditions

n(x) - p(-x), #(x) - (-x)

*'" The reduced current-voltage characteristic 3 - 3(U) exhibits the well-known exponential

behaviour (see Sze (1961)).

The layer-equations (2.11) were solved numerically. Figures 3.4, 3.5, 3.6 show the

* layer-terms *(), n(l) and p() reap., again as surfaces parametrized by --. varying in

" the range specified above. Figure 3.4 demonstrates the increase of the layer jump and of

- the width in the potential * as the reverae bias increases. Figures 3.5, 3.6 show the

•- %*

.... .* * ** . .
** .*""•*;: *: .
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Figure 3.6: Inner Solution p(T) Parametrized by
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depletion of carriers occuring in the space-charge-region for reverse bias and the increase

of the carrier concentration in the space charge region for forward bias.

Also, the 'full' singularly perturbed problem (1.1) was solved numerically (by using

the general purpose two-point-boundary value problem COLSYS authored by Ascher,

Christiansen and Russell (1978)). Figures 3.7, 3.8, 3.9, 3.10 depict the potential ,-.

the electron concentration n, the hole concentration p and the electric field 4:

reasp.

A comparison of the full solutions *,n,p and the reduced solutions *,n,p clearly

shows that *,n,p are approximated well by *,n,p outside the layer-region on the whole

considered bias-range, in fact the corresponding reduced and full solutions agree at least

up to plot accuracy outside the layer. The current-voltage characteristic J - J(U) is

not depicted since it is graphically indistinguishable from the reduced current voltage

characteristic J = J(U) as shown in Figure 3.3. Note that the depicted bias range is

larger than (3.17).

Figure 3.10 demonstrates the occurrence of a very large electric field within the

layer (note the scale on the PSIP-axis), which is explained by the asymptotic expansion

for V' -

V (x,X) W 4"(x) + x J + ...

+S

-23-
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APPENDIX A: THE LINEARIZED PROBLEM

We shall analyze the linearization of problem (1.1) at the formal approximation of the

solution, which has been constructed in Section 2. Thus we consider

2--

+x*+A +* 1 J+(n+n+ n + Xn1 ' + + a'2

* (A.1)

= + *+ X*; +~~~i (p + P+ AP, + Ap
1 )*' + a 3

*(0) a a4, n(0)- p(O) a, W5 1() a. 6'PM1 a V n~l) a.

w ith e B C*n',3 a nd a =(a,,-.. a e B2,A We proceed as in Schmeiser

and Weise (1984) and split the interval (0,1] into two parts [0,x0] and [x0,11

with x0 big enough such that the layer terms are small in [x0,11. we choose

X0 - 2A~n #( ~0) - 2XT * The constants in conditions Ci) and (ii) of Theorem 3.1 can be

chosen such that Ko<I holds. On the interval [0,x 0 j we use T as independent..-

* variable and consider instead of (A.1) the equivalent problem

=n - p + b

(A.2) n, O n1 + (n(0) + n)*1 +b 2

pi -4*p1  (p(O) + p)*1 + b 3 + 32 Z

*for 0O T r 2T 0 #

22 2 4

(A.3) =~ y'n (n + 4 An + .~+ b5 ~
2+ 1 22

P2 2-(p+ p1 I - + b6 + 06z

for xo x 1 and

-28-
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(0)- b o bq, ;i2 (1) -b 9 , ;2 (1) b b 1 0 , n 2(1) b -

(.) '~U #2 *(x 0 + b 2  ~I (2 To 0 N 1

n i(2T) 0 2 (x 0 + b 1 4 , p1(2T0 ) - 2 (XO) +bI 5

b - e with
where z 1 (;0;6;*2;2'f)eBj and b (b1,...,b1 5 ) e 4 ,X

W3 1,0 (0u,2T ) x (L (O.2T )) 2 . , O1 (L x, ))2 x IR and

84x.1(0,2T) x (L (0,2T 0) (L (X x R9.~~ we introduce IzI 3,X

and lb 4 1 on B defined as the suam Of the appropriate norms of the 
components

of z and b respectively. The bi in (A.2)-(A.4) are determined by the si in (A.1)

and obviously

(A.5) lb 4 ,A % &2,X

holds. An estimate of the perturbations x is given in

Lem .:Let BZ 00z :' -' z0. ,) e B4 1  Then

1 3

* . holds.

Proof: Comparing (A.1) to (A-2), (A.3) gives

- 2-.
2 (AV~ + '~ A +; + ;(0) + + -+ ,

3 (AZ + 12 0 1*)pI (p -p(0) 4' I.

Z +' + 4' 4 (n +4' )V2

6 ' ; + *14'

we use the Lemmas A.d.18 and A.d.20 to obtain

-29-
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2 L I(0,2T)

-C [A2r 5 0i + A 2 2 if's + X2r0 s1 a Is +

000 1 - P 1
L ( 0 )L(0,x) L(0,. ) L (0,2T)0 0

+ . (const[A'In /Z. n + 64) +

+ I In I -V2(.f jI + 64/7 +X,1.b + ~A(4 6 4r t/)5/2) +
b0

+ Ln 1)2An/. -2- I~ + d;4)

+~ ~ +~ ~(.~... 64,(b (lt/bj5 12 ) + XJizI3  6#

4 consi X In { + 64 /b (,nVhi)
3 )szI 3

Analogousl~y we get

10 ZI 4 const A In I +64b(,nV'Ib
2 )zi 3

3 L i(0,2 0) V'b - 3,1

The lefmmas A.d.6, A-d.19 and A.d.20 give

5z 1 ~ I5z

L 2 NOL(,) 2 0) L (x,11J

L (2T ,") ';L- ,I L* -2 L(01

+ lntlA + 1n I

00

.~~~~~ 

~ ~ . ..

**.* 

. . . ..

* .*% ... '..*..*'..'.



+ A b , rb + +1,

b -- Iq

t+ - o" + L*) A

bib" ' conslt 41 gn .- + 44/ (n~iJ 5/2 J'zI3. -,.-

Analogouly we obtain 
*

10 ZI 4 conot A(- -1 n 1, + 4,- (ln/F)5 1 2 )1ziA
6 L (Xo0l) 

. "-

For the application of a contraction mapping 
argument to (A.2)-(A.4) we analyze the

unperturbed problem

Sn - +d

(A.7) n = In + (nO) + n)* + d2 ,1O 1

pi -0p, (P(O) + P)#1 + d3

for 0 4 T 4 2TO ,

n2-'  2 + 44

(AA') n = *' (n AnO$) ++ + d

-- (p + A') . +,

for xo 4 x( and

*1(0 d 7 0 i(0) ; 1 (0) d,,, ;2(1) d9, ;2 (1) d 10 , 2 (1) d 11

(A.9 ) I ( x n0() d 1 2 ' 1 (2T) - A (8 0  + d 13

n 1 (2T 0 ) = 2 (xo) + d14' p 1 2t0 ) 2 (x0 ) 
+ 

d15

.3 .

- - .

o_:
- 1(2 O ) " 2(x )  + (:14, P1( '[0 " at o

)  
1 ' .0

................................................... :



where we introduced the new inhomogensity d -(d 11 . .,dls) e B 4 ,), in order to identify

slow and faot variables in (A.S) we apply the following transformation:

#2 t - U

2

=pu + w

Substitution into (A.B) yields

X I -- /2 A -p+I 2'w + + Cd 6-d5
AU'2 + I.p+ 21 6 I)

x I --4 u j 1 d
2(2p + 1)2 p + 1 4

__ _ _ _ __ _ _ _ pd5 + (p + 1)d6
v +3+

2 1 (2; + 1)2 
2 (2j + 1) 

2p + 1

2p, 3 d - d
2J - 6

(2 +1) 2p+ I 2p+ I

As in Schmeiser and Weiss (1984) we apply a decoupling transformation-

AAJ

2p + I -
(A.12) .p1

2p +I

With these transformations (A.7)-(A.9) become

I7

-32-
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I .. .. .

.. ..

A 1 (n(0) + +

1~ 2

|+ e

"~# I ( P | () + P)*1 +  
3 '"

for 0 4 4 ( 21O, 

A• /-"i _0  V+. + E

4 4

(A .14 ) 
-" "'..+!

5

- + 6 + .-6.'6

7 + W 2(2p + 1)..

(2p + 1) 2p + I

for x0 4 x 4 1 and

1 - ' (0)on - 1 O) - °9, U(M 6 "0
E - (1).",-

v(1) a + , ;( I, " 12 , .. .

*1(210) - U(x0 ) + e13 + E13;(x o)

(A.16)

;I(210 0 /2j(x 0 ) + I v(x 0 1 + e14

1 (2T -(p(x 0 ) + 1)u(x0) + w(x 0 ) +15 + 15 z(x

;l(21O) , p(xo)u(x O) + ;(x0 ) + e16 + E,6 '(x"

where Z . ('1 1 ,1  ,VW.,J) e s,,, and e , (ei ,.... 16) e B6 , with

a 5A W(0, , 0 M (0,2'1o 2 Lx 0 1) x R and B.. L(0,2,r0)

1 2 x1 1 2 9
(L (0,2T112 L lx0,1 ) x x (Lx0,1) x R

9 . 
As norm 1-1 on we take

0 5,X1 5,,,1 wx
1 )

the sum of the natural norms of the components of , whereas in the definition of

-33-
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1o6, on a6, we replace Ie41 1 by A'
1  

1 The following
L (x0,1) L (x0,1

two leas give estimates for e in terms of d and for the perturbations Ei; in terms

of z

Lemnmi.A2: The estimate

le , const b Id 4 , -

holds.

Proofs Comparing (A.7)-(A.9) to (A.13)-(A.16) yields

0± " di for i - 1,2,3

. A 1 -a4 2 I(d 6 - d 5 ), e 5 - d4

d5  -L d
e6 - + -+ )+ C + I P ). "6 2(2. + 1) 4 2j+ I 2p + I 2 + I 2p) + I -

"+ 2p4 d4 d d d

Si p1  d6  50 -1 d 1 1

e7 - '1 -- 1e0 2p I 1"

2p + 1 2p + 1

(p1 + 1)d 1 0 + pid 1 1  d - d 1

2p + 1 ' e 1 2  d9 
+

ej dj_ 1  for j = 8,9,13,...,16

Obviously

eI 1 1 con.dt[Iil 1 d 4 + Id5 1 1 + |d61 1
( 1) 2p + 1 L (x0 ,1) L (Xo,1) L (Xo,1) L (x0,1)0 

.xLx

The estimate (A.d. 11) implies

Ib-I b-I1 2 " "2- + I L (Xo,1) (b + 1)V-'1- x L (0,1) b + 1

With const(b +  
2 we obtain

bb
le 1 ( const b Id16 1 (o b 1 4,A

-34-
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Using the nonnegativity of pin estimating the remaining components of e, the result of

Lemma A.2 follow.

Lema A.3: let Ei (0.,,,E 4 . . .,,o,o,,zi,O,E 3z,o,z 1 ,E1 e)CBZ where
4 e1 13 is 16 1

B.y) ise as but with the fourth component 7(V)instead of Ll(x 0),1). The

norm 6A o is defined by replacing X~l I in ICI6 by
norm Sl 6*,A 6 % IL (x NO)6,

(x0,41) Then0

I~zIA ' 2)4(b - 1) 5)

holds.

Proof: Using (A.11) and Lemma A.d.20 gives

SE :1 conat 41 ~ + It'l +1I;Ii

ScOnst X(b + 6 4 ~ b 2
b (b-I

Sconat X b -) + 6 /,p)It~

5 - 2 1
L (X0 11) (2p + L1 (n0,)

Sconst ). bb 2 + 64)1;1 5,.

Elementary calculations show

-.p 2p -223-p

JEp p1  1u22 1 p
+ + 3/2

(2p + 1) 2p + 1 (
2
p + 1 )J~ (2p +-)2 + 1)3 (2j +1)

and

E z 2E 6Z

From (2.8) ye get

-35-



const(b-j-D
2

(2p + 1) 52L 1(0,1) +I

The LeMma A.d.20 and CA.d.12) give

3
36 1 ,1E -C const X[(vb -1+ 64/r b b + 64) +

IZIL I(x0 ,1)' 7 L ICx0 ,1) b(b - 1) 2

4/0- b -I +6
8
t r b 2 8)(b - )2+

ib-Ib (b-I1)

+ (Vb b1 + 64/t4nb)( b 2 + 64) + Vbb1+ 64nbl;
b(b-i1)b

(b - 1)2 A

The perturbations in the boundary conditions contain the terms ____Vand u
2/2 ~ 2j 2+ 1

at x xO and x =1. Estimates follow from Lemma A.d.20.

In order to be able to apply a contraction mapping argument to (A.13)-(A.16) we

* analyze the unperturbed problem

(A.17a) Vo n 1 -p 1 + f

(A-l7b) n1 ='n 1 + (;(0) + n)tjI + f 2 ,

(A.17c) P1 =*P Vp- p)+p) 1  3

for 0~ 4 1 2 a,

Au' + IA 7 v. + f4,

(A.18)

Av' =-/2i + I u + f

-36-
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=2 6
(2; + 1) 2(2j + 1)

(A. 19)

(2; + ) 2 p 7

for xo, x( 1 and

*1(0 f.1 n 1(0) -PI(O) f9 ' u(I) fI0, W(I) f11, t"1) f12

*I (2 x0 Y u(xO) + f13 ' *J1 2T0 ) /2 .~x 0 ) + 1 v(x,) +f 14 '

(A.20)

n 2 0 -P~ 0~ + 1u(x0  + (X 0  + f 15

p1 (2 0 ) i (x 0 )u(x 0  + ;(x 0  + f 16

where f =(f 1,.. . f16 ) is from B ,Xor B ~ The differential equations in problem

(A.17)-(A.20) contain the linearization of the layer equations (2.4) in (A.17), a standard

linear singularly perturbed system in (A.18) and the linearization of the reduced equations

(2.3) in (A.19). These systems are analyzed in the paragraphs a), b) and c) of this

appendix. We then substitute (Aa1,(A.b.3) and (A.c.1) into the boundary conditions

(A.20). We replace To by -, xO by 0 and vh(xO ) and Uh(l ) by 0 in the

*coefficient matrix of the resulting linear system for the ci's. Thus, we solve a system

of the form Ac - ni instead of (A + F)c - n, where

This estimate follows from the Lemmas A.a.3, A.b.l, Taylor's theorem and the estimates in

the proof of Lemma A.d.20. The system with F -0 is given by

-37-



C2  
8

2Vb + 0
C2 3 C4 f9 n 0

c6 f 1 0  

7 
~l

~7 2pT-;+ 1 9 2(2p, + 1) f 11

c 2;--+c -c 1 f -()
7'2p 1  8 9 2p, + 12 p

(A.21) ci /--- c -b bc - 2(b-) c
12 b+ 3b+ + c4 v b +1c5 C7 b--+1 c.

- 13 - ~I(2T 0  + 2w (x0 ) - p (x 0

bl 1b b-!I

f1 0 - (x 02 x) n-+w
15 p + p I c b + 1 p

1 3 b +1 4b + 1
+ ~-C b.17 b + 1

- v(t V(x) 1 w(

16 P 0 p 0  b -i + ~ 0)

.- C C + C b +2 c c -

*Lengthy calculations show that the coefficient matrix satisfies

IAIC b
4 b

*With the constants in Theorem 3.1 chosen appropriately, the estimate

IA'L.IFI. 4

*holds, which implies the nonsingularity of A + F and

(A + F) 1 1I 4 2C b

Using the estimates on the particular solutions in lemma A.a.1, in (A.b.4) and CA.c.2) we

obtain an estimate of the riqhthand side nl of (A.21):

-38-
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mnl. 4 COnst(;I4 1 + Ln/bJlfE6 .

This implies for c -(c= .... 1 :
,0

(A.22) l. 4 const( b 2.- + &n/bJlfU6,
(b - 1)

Using (A.22). the estimates (A.b.4), (A.c.2) And Lema A.A.1 we obtain

. 5 c o n s t ( I + ( I n V1) 2 ) f 6 * ,

(b - 1)

The difference between 11 6,X and 11 *,X only appears in the fourth component. Using

(A.b.5) we immediately obtain .(A.23) 
Nil s,x 4 CS(  3 + 

t#.b(b 1)

Lemma A.3 and (A.23) imply the condition

(A.24) C2 C5 4 + 64(tn5b)5'2 ) ; 2
(b-i1) 52Le

for the applicability of a contraction mapping argument. With the constants in Theorem 3.1

chosen appropriately (A.24) is satisfied and the solvability of problem (A.13)-(A.16)

follows. Furthermore we obtain the estimate

iZI5s, 4 const( + (.nV/.)2) 6 -
(b - 1

and from Lemma A.2

(A.25) I; -1 S ( const( 1 + (L )2 ld4,A
( - 1 )-- 

71-_:

The transformations (A.10) and (A.12) give

3,X b - I 5A
Thus, (A.25) implies "

(A.26) *ZI C I + (nrb) 2 ) d3 4 ,3 , X c6( b 5) "14,.
.(b - 1)

If the condition

C C:~f 1 1 + 64Vb(LnvT) 5 ) 4 .1
1b . .11 / 2 2

;.. ~ ~(b - 1) / "

........... * .:
. . .. .o.. .-

. . .-9-.-.."..
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PIPE.

is satisfied (which again is guaranteed by the assumptions in Theorem 3.1) we can apply a

contraction mapping argument to obtain solvability of problem (A.2)-(A.4) and the estimate

(A.27) (X 4 Is Jdb b

Thus, problem (A.1) also has a unique solution y. The differential equations in (A.1) can

be used to show

y eB X

and the estimate

(A.28) ( conat 4 -on -j 3A

Finally (A.5), (A.27) and (A.28) imply the validity of the

Lea A.4: Problem A.1 has a unique solution y and the estimate .-

I ( ' const ( 1) 6 + (Inrb) )a 2,A

holds.

a) The linearized layer equations.

we consider (A.17). integration of CA.17b~c) and using (2.6), (2.8) yield

n, c3 b 4' I -

(A.a.1)

rb V q

where c3, c4  are constants and -.-

(T) e; f JWe~()5f ds

20

T5
pq(T) f .1W Bdsq

The monotonicity of *immediately implies the estimates

(A.a.2) In I if I Sp I e. if a
q L-(,2T 2L I(0,2T )f q L.(O,2T 3 02
qLO2 0  0 0 L1  0
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Substituting (A.a.1) into (A.17a) gives

1 b_--I b- -1 3 q q ;.

The homogeneous part of (A.a.3) hat the linearly independent solutions *(I) and

#1T) J 4r2(s)da. For the construction of A particular solution of the inhomogeneousi 0.
equation we use the results of Fife (1974) and get

I (r) T0 T() - ()d + c "- It (0)

o

(2. av4a) C.
W ft + c1 -" (0

0 r

*(0WT) I (*)do 2 ( T
0

"-' "C €3 (1) J Ie1 -- -l l (s ds. .'('.

o 2

V.) 2 0 - • W 
,-.

L,#F : (a - # d

p0o q 
o(. f,(u]d.

(A.a.4a) gives •. .

(A.a.4b) 4,(T) C c 1 4,2r 0 4)[W) p( ) ,~(s)ds + M() + c (r(T) -pT)i 0
02

0

-41-
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- 4 [(n(T) - p(2)) j (0
"1 a1 - I) . 2 s + ( "**(r) - )

0 b Opp T)

p

i The estimates of the solution are collected in

Lemma A. a. 1:

a) ,, , contC./ Ic1c' + 'c21 + Atn'b Ic3 l + An'b Ic 41 + nV,/b" lf16,X
L (0,2 b)

0 b) 1 1 4o1 + ( I + I 1 + , " I. .

b) ~I Cont((i + /jt-i- 2c ~ 3

L (0,2 0 ) -- I

+ + Anti) Ic 31 + ( + I Anr) c41 + (1 .An ) lfI 6,.)

d) IoI 4Con( b - I + V I + Ic+ '---"
L"(0,2T let b r .2 -

*Proof: The results are obtained by using the Lemmas A.d.4, A.d.5, A.d.8, A.d.i0, A.d.ii

and A.d.12 and the estimates (A.a.2).

With ( T) - - e * T) + n (T) and (T) e - + - T$(+ . ) + , "-t)p b- p q p b-
* define

oh( T) I (*I T) - *L C2) I

(hOT) CT) (1 •.T)
1 p

ph(T) " p (T) - ("T)
h I ;p

We have

-42-
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A) lim h (cT)c C 1 " c-3 b+1 + c -
b(b + 1) It

b) link (1) c 
.

T-, 
,h.: .

o

li (1) c b + c~ ~ Ib

I I b + 2''-"-
d) "a Phi ) -c 1  33 l + 4

" ,
- -- ____,,, 3 b"+.1 , (b + 1

Proof The Lemmas A.d.3, A.d.5, A.d.8, A.d.9, A.d.11 and A.d.12 immediately imply a)-d).

Lemma A.a.3"

a) I'h C2rO) - , const , , (Ltn h)
3
/2

b Inh(2TO) - ()l conat )A .(/I24 "LnIS:3 '

;h(-.-) b -

d) I h (2T0) (- ) 4 const )In- 1/

Proof: The results can be shown by combining the Lemmas A.d.6. A.d.9 and A.d.11-17.

b) Analysis of (A.18)

The analysis of (A.18) is facilitated by the transformation

(A,.b.1) u U + V,

Using (A.b.1) we obtain from (A.18): S

X = /- u + (f +f f5)

(A.b.2)

/2j + I + I " f-

2 4 5

-43-
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The behavior of solutions of (A.b.2) is characterized by

Lea A.b.1: Let Ay' - -G(x)y + f(x), x e [a~b), a(x) ;P a > 0. Then there is a

solution yhof the homogeneous equation and a particular solution y. which satisfy

(y1Y a , y()I1 exp(- (b a))

ly I 1,t -1, Cb -

SL"(a,b) L (a,b) P L"(a,b) L Ca,b)

Proof% We use yh(X) = X,(-.\- JXCJ(t)dt) and yp(x) = Al 13 exp(-1A Ix ,(s)d,)f(t)dt.
a p t

* An analagous result holds for UCK) IC -a < 0. Thus, we have

*(A.b.3) u cS Uh+c + 1A + V

v 5  h c6v'h p p

* where

(A.b.4) 1uI, ,Ivi 4 const( Ic5 l + Ic61 + lfI6,)LC2C011) L (xgl)

and

(A.b.5) HuE lvi- C const(1c5 l + Ic61 + f6,X-7-7
L (x,,1) L N, 11

c) The linearized reduced equations

Integration of (A.19) gives

7 +w
2p + 1 2(2p + 1)

-AC1 2 + 0 +

2p +1 2p+ I

j -C 9

* where

w(x) =- J(2j(t) + 1)f 6 (t)dt
p 2p(x) + 1 1

-44-
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PX w (f 7 (t) 2f6(t))dt

Since (2j + 1) is monotonically decreasing the estimates

Iwo e const(c 7  9 OA

L (x.81)

(A-c.2) L~ (xO1 corist( 151 + 1c.1 + Ic~l + f6k

hold.

d) Collection of technical results

We now state some useful general results.

Lemma A.d.1: Let y be the solution of the initial value problem

y a(T)y + f(T), T 0, y(O) Y ,

owe
C) f(~T)

with a,f eC[O,) , aCOr. -p < 0 for T >0. Let Y. lim a(T) Then
Y4

-yT . C ty 0  + ye + e 12 I+ay 1

(A.d.1) 1*L (0,T/2)

+ 1If + aY.1
P L (r/2,r)

* holds.

Proof: We set u -y -y.. Then u is the solution of

-a(T)U + h(T), u(0) yo -Y

*where h(rT) f(T) + ya(t). Thus,

u =(yo - y.)exp(f a~aids) + f' exp(f a(u)du)h(s)ds
0 0 s

*We split the integral in the particular solution into two parts and use the upper bound of

a(0) to obtain the estimate

g) e c[0,-] <-> (g e cEO,.) and lim g(t) exists and is finite.)

-45-
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7~ F,

.1h1 1 0 jhsId

L~ (0,T/2)

which implies (A.d.1).

Lemma A.d.2z Let y be the solution of

=a(r)y + f(T), T )0, y(-) =yf,

with a.f e CEO,**] , a(l) ;0 p 0 for T )o 0 and Y. -i. Then

(A.d.2) jy(r) -. f. if + If
L (T.-n)

Proof: The function u =y y" is the solution of

u=aCT)u + h(T), U(-) -0

where h(r) =f(r) + y.A(r). Thus

T T

u exp(f a(u)du)h(s)ds f exp(- I a(u)du)h(s)ds

holds.

Using the lower bound of a(r) we obtain the estimate

ju(To I elh ~s)Ids < Ohla
L ,)

T

Lemma A.d.3: Let g e c(0,=); f, h, f(T) f g(s)ds e CO,3, and f(-) =0

Then

-46-
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70

T

(A.d.3) lim f(T) Jg(s)h(s)da l im h(T)f(r) IJ (@d
T0 0 T"0

holds.

Proof: The limit on the right hand side of (A.d.3) exists. It remains to show

=yM lh(T)f(-T) f g(s)ds -f(-r) I g(s)h(s)dsl ( C cfor T - T(E)
0 0

We set 1h1 1410 IfMr j (s)dst K 12. Clearly
L (0.-) 0 L (0,-)

=yT~ lf(T) f g(s)(h(-T) -h(s))dtel f
0

4 f(T) J g(s)(h(r) -h(s))dsI + jf(T) L, g(s)(h(T) -h(s))l

0

holds. We choose T -TMC so that

Ih(T) Mads1( ~ for t,s ?T
22

holds. Then we choose i T (E) s uch that

IfV[)I < E(4, of Ig(s)jds)- for T

This implies

* Iy()I C forT>T

The following Lemmas are results on the behavior of the layer solutions.

* .. Lemma A.d.4t There are positive constants c1 < c 2 such that

c *(0V- l) c I~

holds.

-47-
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Proof: The relations (2.11) imply

*(0)b b + 1) £nV- -- ±
Vio> /2 /2(I.

b~ ~ F + Il {-1

2 tn/ Wllb), with Fill ) 1 - lln

Elementary calculations give

F e CEI,-1, !() ) c > 0 for I e [1,-)

This implies the existence of c 1 ,c 2 > 0 such that :6

2 2

2 4 NIS) 4 22 -

Lemma A.d.5: * I ( '(0), lir -

Rpb n-p L~f nOn T P b +

Proof: Let H() . )2. With (2.11) we get
n-

2H(-Ltnh) = (0)

To verify the second assertion of the lema we use the rule of do l'Hopital and the

relations

(A.d.4) 4 dl -7>^. b 1

' +  b-d* d* dt - ,

which follow from (2.11):

2' 2(n -p) b I
Jim H() Jim Jim -

*+O *+0 I - p)2 0+0 2(n )(b + n + b

To complete the proof of Lemma A.d.5 we show that H(I) is monotonically decreasing: °S

-48-
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dli 214(4) ;2 2b1-
Z ~ with i4(;) =-- + +

d*i (-)
3 b

Since n - p 4 0 we have to show that M(;) ; 0. (A.d.4) gives -- - p0,

for e e [-Lnr/,O], which implies that M is monotonically decreasing on [-Irwb,O] and,

thus, M(;) 0 0 there, because X(0) - 0 holds.

Lemma A.d.6s Let 1 - *(O)tn Then S

I const XiI(0) 2, I*I 1
L (W0,) L (iT ,)

0)2Cons 0 ,'. ,;1 onst A()2
L7(ir 0 ,M) b I L( UO, ) 2

hold for i > 0.

Proof: z -z ' is the solution of

-n-p z, z(0) = 410)
I

An application of Lemma A.d.1 with U ;(0)1 (see Lemma A.d.5) yields

(A.d.5) *(T) < *(0)exp(-T/f(0))

Taylor's theorem, Lemma A.d.5 and (A.d.4) imply

b.IIn(T)I 4 conat '(o)4'(T) S

p.(' 4' o ,, (0)4'(T).:555!.

This completes the proof of Lemma A.d.6.
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Lemma A.d.7- in - p + - 4 conat i(0)2 holds for i > 0.
L (iT~.n

2
#X o- L (F'(*O  

b ) * 1 .

Proof: We set HUt)- who .-.- , where F(4) -b * +-- e-_ b + IIA

Tayors.2F(*) b -I b I

An application of Taylor's theorem yields

2 ^2(b + 1)2[1 + 0+ ̂  " '
b - I-b +

2F(*) -2 b + + 0(; b

which implies
(_ b + I [I+0; )- I + I

Hence

P [ I + (; b 4. = / + 0(;')

b~:I b

The assertion follows from Lemma A.d.6.
T

Lemma A.d.8: Let y = ') I *(s)' ds. Then

a) lim y(T) -

b) lyl f li(0)
L (0,-)

Proof: a) de iHopital's theorem and Lemma A.d.5 give:

lim y(r) limn - -1 1= - lim V -.-
t 12 * 4

2-. T-- T-- 2 T-- n -p +

b) y is the solution of

"-= --- y y + y(O) = 0

*. Since y - 0 holds at a relative minimum or maximum of y in (O,m) we obtain

-50-
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l -l 1. . .

From y(O) =0 and a) ye conclude b).

Lemma A.d.9t Leat y ,(T) W ~ 2 sds- Then
0

a) Lim y(T) 1 b b-I

b) 1yl L 0)( '0

c)b 1 consti I /'1 1J;3(o) for i > 0.

L) (2i 0  b + 

Proof; a) From de 1llopital's theorem and Lemma A.d.5 we derive:

Lim Y(T) l im (-2 f2)l1_1 b - I

13 £ 2 b+13

b) is positive and monotonically decreasing. Thus, Lemma A.d.8 gives

Y(T) ) ~ (s)ds 4 *0)
04

c) y is the solution of

n p 2 iY + 1, y(O) =0

An application of Lemma A.d.1 with 0' 2 (see Lemma A.d.5) yes

00)

-51-



jy(T) /; =-I xp~2~J

+ I (O)exp(--.ji + -
2
p A -- I

2 bO)E + 1

which implies

2y lbi'constL/-j + 4i + +()~ ;j(O) f/E ; 2 (o)Xil

L 12T0b

Lemma A.d.1O. Let y(r) f *(s)ds. Then

lyE -os F( ~
L (0,-)

Proof: Obviously Y(T) =-?(T)/41(T) and y is the solution of

* n Iky =-..ky - .y(O) -()*

Y assumes its maximum at T -0 or At a stationary point. Using Lemma A.d.4 we obtain

In/
Y() ost/t)-

For stationary points0

ly(T)I -9 0T±0. I) 4conat nr

holds by Lemma A.d.5.

-52-



Lemma A.d.11i Let T . hen

a) ii. y(T)

b) ly < conatit7b.
L (0,-n)

c) NY - 14conat Ai3(0) for £ > 0.

Proof: a) We apply de l'Hopital'a theorem and Leoma A.d.5:

UMn y(r) J im J im a b +

b) y is the solution of

As in the proof of Lemma A.d.i0 we have to estimate Iyt~ at T 0 and at stationary...

* pointez

Y(O) = i~±4 1 (0) (const
/b //n'

Similarly to the proof of Lemma A.d.4 we obtain

y(0) 4 const ifn/b 7

For stationary points we have

n-p

7,1 -53-
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7:777 7 -7 7

c) We apply Lemma A-d.2 with PJ ;-4,(0) and obtain

/b --1' ((0)1 b --1I
L (T,-)

which implies

by + b +,0'~ 1 L~ + *,10)11-e'I
L7(iT 0 1 ) ;11L(iT 0 1  L (iT0,")

4 coflst (0)[/ I I Ai; 2 (o) + X;()

by the Lemma A.d.6 and A.d.7.

-
Lemma A.d.12: Let y =.Then

a) li Y(v) b I,

a) lm y~) bb + 1)

b) lyl IC( const/Idb
L (0,-)

b-i 13(a i > 0C) By - bUb .)w(cnt~4 ) fr10
(b+I'L U(I-0,)

Proof: a)Y(T) e e Lemma A.d.1la) yields the result.

/b

b) follows from Lemma A.d.1lb) and from e 4 b

-54-
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c)~' 7-- -47..EE

b ~ b +1 1) bb +1)+ +
L LiO" 0irM)m

+Ie -I--14

+ Re-1* - if 4 conat I i(;
3 (O) +~ b -1I2()

b~~b+1) L (iT~i)bb41

LemsA.d.13: Let yMt V JT) de. Then
02Cs

b-i)

a) haM y(r) b

b + I~~coa

b) cos - b+ L(i , for ±> 0.

Proof: The Lemmas A.d.3, A.d.8 and A.d.1I imply a). y is the solution of

y(O) -

An application of Lemma A.d.1 with 4 I (0) (see Lemma A.d.5) yields

y(*[) -b~i b- 41 (O)*1 + *C~x * n- b-I
b+ I b + 1~1I () +0e~!i(0) 2P I + 4

+~~ *(0,1-)

Thus,

-55-



4. IL S-+ *(O)xiconat/17+

+ .V)L)iI + * (0 +i/bT,6 b + L(2iT0 .in

- b- b/ I~p

Cconat )~[ib + *o0 l- 40 + .b - 1 3Q
b + 1 0

Lemma A.d.14: Let y(T) *(- d. Than

0 ,I *2

b I

rb(b + 1)

b) ly -b 14cnt 40)for 1 0.
vbb+ 1) LC(21T0

* The proof of this Lea proceeds analogously to that Of Lemma A.d. 13 and is therefore

omitted.

Lea A.d.15s Let Y(T) -*(T)(n(r) - (T)) f s;-)ds Than

a) 14. Y(T)--

b) ly + .1 e. conat I i*3 (o) for i)0.
2L (21To1 ft)

Proof: a) y - (* 2 s)du. We combine the Lamms A.d.5 and A.d.9a) to
0

obtain a).

-56-
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I1. / -I. +
b) IL + 1- '+ -lO,)

4..,Lz.-k2--/'E2.2
L 2i--(2iT ,) 0

n p 1*2 (T) 2 do-.- - " ", (r •jV2(s)ds  .1 b-1 Io.. _

L L(2iT't) 0 L

____~ ("-

2 b-. L 5 +: 0

e~" d-. The

:: -i-i ..,-

:-:.i "lb-"i"b+'

I"* i-c....

.• A.d.16: Let y(T) (nUT) pT)) J A .d.. Th en.
0 2

&) iI y(T) -l

bb +. -const X±/ 1 ;40) for i> 0.b) ly + +nIt

L (21To ,a)

:()t y(T) (n 1 PM) f do. Then
o4

- / . s) ,' b'.-

a) l. y()"

(b) l + ) oo.t s 0) for 1 0.

The Rroofs of the Lemmas A.d.16, A.d.17 are similar to that of Lemma A.d.15.

. . -.
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L~emma k.d.1S: a) I* I cT st 64/bb(in/b)5/2)

b) I* I (const(-! + 64 r&(Ln&-)512)'

C) In I* const(--1-. + 64iSb('nrb) 5/ 2 ) 
aL (0,-)

d) (pUIcin) t + 6'1rb(Ln/) 3 12 ).

* -Prooft The estimates

*(A.d.6) IIl cost(:

(A~d.7 IT*Iconst( nV-b) 3 1 2
.

L (0,-)

hold. Since

I nI
L (0,-) L (0,-) L (0.-)

holds, (A.d.6) follows. Using CA.d.5) in the proof of Loin.a j.d.6 we get

(3IT*1 1 OMIT expC-T/#(0))I 1 (0L (0,in) L (,n

which implies CA.d.7). Now we are able to find estimates on the function& In (2.16).
Using '(0) 64)) b + 1 and the snotonicity and sign of *we get

2l(ont b b I.
(b 1O)(b-1

n 1 4 con(1 + ~4
L1T b 3/2) b .tf)32

- 1 /
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~LCO) (cona (b~2 4) b rb (Vjn/-b + (LIn'i)3 12 )

'conat + or L#')'

bl4)b - 12;0

(b - 1)2

and obtain

[r L O ,( b + 64)( lb I

lVb - I

This estimate and the lemmnas A.d.8 and A-d-1O imply

LnV'4 3 ~( /3 2 )

c =b- I~j-2 + 64r (Lnb) 5/2)

.B-- n P #p (t) J*(s)H(B)ds

which implies

b ... L. + 64'/b (,nlb)31 2 )j
lb-

( const(.1 + 64v'b (tnrb) 5 2

Kb

- -- w 59



The constant c in (2.15) satisfies (see Learn 2.1)

b 64)(b-)( 1 I
- ) b lconst( + --- b

Thus, we have

pcnw~ + 64 5 2  + ost. + 64 b (lS /5 2 )

In ~ ~ ~ ~ ~ ~ lIr nI- cos[ -- j .1 4 )(nS)~2
L(b, b

4 cost~b I+ 64 Ib C.tnr)5 2 )

(b-i n b-i+4
(~,os +os(2 -. e 4s(nE 3 2

/b - b

/Jt:-;9

+ +64-bj.(b1/) costI -60- (nV

..........................................

c o st b. ( 1/bh I + .(S 2



Z~wma A. d.19 s a) 1 L"1r b oa (nr--- 6/ L/ 5 2

L (21T Or-)

b A) 51 4 conat In In + + 6' (Ln) P
L (2 1  b _

d) 1(Rcoast x __I__

L (21 0 0) Vb -I

hold for ± > 0.

Proofs The estimates

(A.d.8) InS I 1C conet 47
L1 

(JTOM L U1 0 ,6)

(A~d9) 141 4 coast Xin I~ (Ln/Sb) 3/2

-. hold. The proofs of CA.d.8) and (A.d.9) are similar to those of (A.d.6) and (A.d.7) and

theref ore omitted. Proceeding along the lines of the proof of Lemas A.d.18 gives

Ini1 4 const A In + - 6(iv)J

pp const A~in I~ I +4(.tnr)
3
/
2 )

SHI - coast X In 4 (1 + 6 (n) 3 2

L (iTO0 .) lb - I

Now we apply Lem A.d.10 and obtain

(A.d. 10) 1* I 4 conat I~;7blyl

-61-
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where Y(T) **(r) J*(S)IHI do. y is the solution of
0 L (~n

y = y + SHE L~,) y(O) *0

*An application of Lemma A.d.1 with U I (0) gives-

jy(T)I 4 0(0) exi4-*- (0) j.JSHI + (O)UI
2 L OW10,-) L (T/2,-)

Using this estimate in (A.d.10) implies

1I I const X itnr 1 + 64rb(lnrTh3"2 +t La S.(2- 4 (Ln,(-) 3/2)]
L(2ir ) /b-I b -I

4 coast 1'P 1/b - I 64 /b (Lnb)5 /2 j

II, I const(a1 b
p L7(21To ) b 1b ~/~5 2

+ A,/b AXXn '~ ( 1 + 64 (Ltnrb) 3"2 )J

4 const A'(.!In +a 6~ 4. & (Ln/b-) 5 1 2 )

These estimates enable us to show the assertions of Lemma A.d.19:

(2iT0,.)r - + 64 /,.V-) I X *~(0) +

+ ) (.tn I Vb -- I 64b Ctnvb) jj ,

L (2ir0 1 -) + 64)X2 i b 2 (0) + A'i(-! Xn + 64r (Lnjb)5/ 2 )I

-62-
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i ~flnI (const Xt (I b+ 6 ( 
-

)---J

L"(2T-)

1 i,, 1 b-1 + 4rb (n-)/2)..-, II p i r const I- " "-- b- " '

L (21TG,)

The last Lemma of this paragraph gives estimates on 
the smooth terms in the asymptotic

expansion.

LZ.& . A.d.20: Let 0 < Z < i. Then

a) cp'" - (Cost( I + 64), b) ,.fi 4 const( b +,

a) 1 0x 9- W01 (b - 1) 2

c) l,"l - onst(b._:_ 1 + 68), d) .. 2 6 8)'

d)i; - cn(~i+ 6 A ), u * cost( +6,V
4 :)

L (0,x)L (b,-1

g) *~I const(~ + 64), -01 const( +/2

L (0,1 ) 
(L I

=b- + 6/ b-i

Proof. we will use the estimates

2
p(x) + 1 (b + 

.)V 

-X

b(-I 2.. 1, 4 conet

-"22; + 1 L -(o,x) + 2j + 1 L (0, )

which we obtain from (2.8) by elementary calculations. From (2.3) and (2.8) we obtain

1p .. 
4 , const(-. + ) - ',Cofl b- + *).

L,(O,x) 2(2p + 1) L (0,;) (b- )b

U-p'I * const b + 64)

L (0,1) 1b 1)
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L (0,x) (2P- + 1) L(x)(b 1)- b + I1 I +- 6

con C~lt( b 1 +68).7

Sconst( b + 64)( b 2 4 6) b cst b2  
+8)

L (01 b-12 (b + 1) (b - 1)

The assertions on W jIp0 (b - )1-x) reantbeho:

(b + l)2(2p(x) + 1)

I~,a~ constljI*(0) b - I I r f--x b -1
L 01)b + 1 b + I-

( ~ 2 const(V + 6)/ b)2bi 4
(b-i1) b + 1) bcnt--~-6'ri

Ip;(x)I a-(0 b- - 2i
2(b + l)(2p~x) + 1) (2 )

~ onstJri0
2p(x) +. I

by (A.d.11). Thus,

a - 'const[ b + 64/ir b- b -1 4
2 OVnb 1) 4cons (-. + 6 IrLC0,x) (b -b)

lp ~ ( conlst( 1t-- +6
L (0,1) f -I

V I () b - - 3( L1 - X)J )l
L (0,I) (b + 1)(2p + 1) 2

(2
p + 1) L (0,1)S

'const + d'/t~ b 1 const(- 1 g-2+ 68,4l
(b -1) b+ 1(b-1)/
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APPENDIX B ESTIMATES OF THE RESIDUAL

Substitution of the formal asymptotic approximation

X;+ )n 1 p + p + Xp + Xp1 J + A) B

into problem (3.1a) gives the residual

F 4X + X4 . In ;(0) -xi'(0))* + (;(0) + l~

+ G -0 + (i,(0) - ~ X[ - 4+i;;n + (n )*

+n , 1----•

1X2 1 , (p - (o) - k'(0))* + (i - gm)* +

+ (p1  pi () +~ - ,(0))p + 4,*I iji' + (p1 + p1 )?*I1  +I -I

2

L (0,1) (b - 1)-

2;.a x2( 1 ~d/~
L (0,) (b - I /2

We now apply Taylor's theorem and the Lemmas A.d.6 and A.d.20.

1 - ,o) - m,()) ;, , ( - * - (o, - x;(o,, x o o  ' ;o4

L 1(0,1) L (0,4Xr0) L (0,-)

+ ~ Ip - im xp.(0)U .*1

L (0,1) L (4T0,®)
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(c coflt(A2 T 2 Ip"I L(,Ar);(0)I + L(01 .A3 *()

< conat A2 (In 1)2(b- + 68 (Ltn/b)2J
b

Similarly we obtain

L (0,1) L (0,16XT) L (0...)
0

+ fi(0) if <II~ 6A 2 t0 ~ I* 1j.I
L (0,1) L**(6T 0 , 0 (0,6A+

+ lpl const X n + ~(n~ 5 2

L (0,1)

(const X In - T FL + 64 F + 6~4)

(cofl~t A In Q~ +~ + 8ZVb

LG (0,) n )*I3A 3L i I0) L(01
00

constlnI /Xi(O'b r -1)2I 46/tr).n + ( + 64t+A b r - , ~

< const A In 6. 6(Invb)2

<0) 3Ar0Iiul I - 1 +i" m
L 0,) 0 L -(0,3AT) L (0,-) L-(0,I) L(3tL OT

(const [A2. A +jr I + 68)/
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In I
7- ) + ) L "(, 1) L74 0"

L (0,1) L (0,4,\'C 0

X b -1

(b-I 'b- 1

4 const X Ln b b-ib)3

X2 m const X 64) t/b

L (001) q I,7(0,1)In L (0,mn) -

cons
2 ( + 6 tn1b)

+ 4T I

+n1*1L 1(0,1) I, ~ L7(0,4A-t 0) 0 0,

1 rb~ 1 1 4/-1-b4 +

+4 10 i LI +4 0 , l b - I

+. 6 4rb (Ltn,/) 5/ 2 )Lfl . ( + 6l (/T 5 2

4. . 4 ~ ~ b-1 (Znli) 5 / 2 ))(.1 In ~.+ 64Vlb (Lnl5) 5 2) A ~ -

C ont + 6nb(Lv In)I1 64r

+ X I
b x ~ib - 1 . n

L (0,1) L(,) L(,) L(,

' o~ 2(2 . 4 + 6~/ Llh'
lb . lb -irb("

cons
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The remaining terms are treated analogously, and

(.)*Ab )IA conat A 2 [ 1 + t 6 (nvb) 1 1 2J

(b-).

follows.
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